Skip to main content
shopping_basket Basket 0
Log in

How to build industrial open source motion control for a robotic arm - part 1

When industrial automation begins to incorporate open source hardware solutions, like those provided by Industrial Shields, a new range of possibilities opens up. RS Components, together with Industrial Shields, wanted to demonstrate the advantages of open source hardware combined with the reliability of industrial standards. 

Naturally, the field of robotics seemed like the perfect way to showcase what open source hardware can do, opening also to smaller companies the doors of robotics which has been so far accessible only from the larger ones. 

The project followed four steps: 

  • The idea: to develop an open source motion control system suitable to be applied to a robotic arm.
  • The real test: to bring the robotic arm in a real industrial environment to test the motion control system. (Part 2)
  • The industrial integration: to transfer the motion control system to a real industrial robotic arm.
  • The next step: to move forward dressing the robotic arm with sensors and smart tools for further applications and developments.


For the first part of the project, we involved the Italian maker and tech guru Massimo Temporelli to help create an exciting robotics project using the world’s first Arduino-based open source industrial controller, the Industrial Shields PLC, as the driving hardware. 

Massimo Temporelli is President and Founder of The Fablab, a shared digital fabrication workshop and a central hub for maker culture in Italy. For 20 years he has worked at the intersection of science, technology, and innovation, bringing his expertise to universities, top museums, publications, and on television, radio, and the web. His latest book, Innovatori!, explores the mindsets and perspectives of the world’s biggest innovators.

For this project Massimo was tasked with building a robotic arm capable of being used in sophisticated industrial automation applications. The complexity of a robotic arm with several components which have to be logically controlled to obtain smooth and precise movements was exactly the kind of challenge we were looking for to demonstrate the Industrial Shields PLC capabilities.


Thanks to open source hardware solutions like the Industrial Shields PLC and support from the maker community, it’s easier than ever to build an industrial robotic arm. We started with an open source design from Ruc Fablab in the Netherlands, who provides all of the mechanical designs and Arduino code needed for the project. In the spirit of working out of a fablab we naturally wanted to make some slight modifications to the original design from Ruc.

All the modified designs together with the customised Arduino code and ready to be 3D printed STL files for this cool project are available for free download at the the end of this article!

The controller powering the robot will be the open source Industrial Shields M-Duino PLC



 When choosing the building materials for the robot, we thought it would be interesting to use a natural material like wood to provide a fun contrast with the technical nature of the project, making the robot appear bit more friendly. 

Once we have selected our building material, it’s time to go to the laser cutter to cut it into the shapes we need. In just a few minutes, the laser cutter cuts out all of the mechanical parts needed for the robotic arm.


Thanks to the clever design, putting together all of the individual laser cut pieces is remarkably quick and simple. In just 25 minutes Massimo was able to build the entire robotic arm.


Once the laser cut pieces are all assembled, it’s time to insert the electronics components needed to power and drive the arm, including stepper motors and drivers, then of course the Industrial Shields PLC for piloting the robot.


Here are the individual components needed: 

  • 3 Sanyo Denki Bipolar stepper motors, one for each axis RS Stock No:  (829-3525)
  • 3 Geckodrive stepper motor drivers RS Stock No: (793-4127)
  • 2 3D-printed clamps (download files below)
  • 2 Parallax Inc servo motors RS StockNo:  (790-5220)
  • 1 Siemens SITOP DIN rail power supply RS Stock No:  (776-7729)
  • 1 Industrial Shields M-DUINO PLC RS Stock No:  (885-0926)
  • 1 Reel white automotive wire 0.5mm2 RS Stock No:  (369-4800)
  • 1 Reel black automotive wire 0.5mm2 RS Stock No:  (369-4771)
  • 1 Reel red automotive wire 0.5mm2 RS Stock No:  (369-4787)
  • 1 Reel green automotive wire 0.5mm2 RS Stock No:  (369-4793)

 3D models of all 3D printed parts are available for FREE download at the end of this article

After all of the electronic components are installed and wired, the next step is to transfer the instructions from the computer to the robot using a normal connection cable. Now the robot is all assembled and ready to work!


Of course, the real test of the project will be using the robotic arm in an industrial setting. For this second part of the project Massimo Temporelli will take the assembled robot to the RS Components warehouse in Milan to demonstrate its capabilities for real-world industrial applications.

CLICK HERE for the next episode!


Half creative, half geek, half engineer, half chef and half tech addicted. Yes, lot of halves... One life is not enough! Feel free to follow me on Instagram @GIANLUCA_FANCHINI


October 15, 2019 07:32

can you please share dimensions of the parts??

0 Votes

[Comment was deleted]

February 18, 2019 14:36

What are you using for limit switches? I did not see any listed. If you are not using them, what are you using to home the arm?

0 Votes

February 12, 2019 09:22

Hello, You did very good work. But, I am requesting you to share the assembly of this arm in solidworks. I hope you will share it very soon, Mail:

0 Votes

March 3, 2020 14:09

@OmkarKshirsagar did you get the assembly of this arm in solidworks, if yes then please send to my mail

August 20, 2018 10:23

What is the graphic interface you used on the computer to control the robot arm?

0 Votes

[Comment was deleted]

[Comment was deleted]

[Comment was deleted]

January 20, 2018 21:08

los documentos no me abren

[Comment was deleted]

February 20, 2017 10:44

Really cool . But not every one own a laser-cutter. It's much more expensive than a 3D printer.

0 Votes

January 20, 2018 21:08

@wei1224hf There are maker spaces opening all over the world, many have laser cutters that you can use along with many other machines that are just not practical to own. In the UK there are FabLabs and Eagle Labs but I bet there are many others

October 14, 2016 11:18

Hi zafrulumar!

thank you very much for your note. I didn't seen the attachments were no more threre.
Probably something went wrong with our new portal.
The files for lasercutting, 3D printing and programming are now back and they are available for download.

Regarding the webpage you can briefly see in the video, is a page from the Ruc Fablab from where we picked up the original project.
The link is in the article.


0 Votes

October 11, 2016 09:28

Hello GianlucaRS
I do not see link to download 3D Printed parts. Please share. Also in your video you were showing a web page having details of Robotic arm cut outs. Please share the link also. Thanks in advance.

0 Votes

June 10, 2016 08:02

BillBucket wrote:
> Do the component links actually work for anyone? Any time I click on one it takes
> me to a region selection page and when I select USA it dumps me on the home page
> of Allied Electronics. So, sure I can search by the number in the link text, but
> what is the point of the links if they can't maintain a search query through a region
> selection?

Hi Bill,

unfortunately there is not yet fully alignment between RS and Allied websites, that's why you are led to the home page.
Apologies for this.

However there is an alternative solutions, the international RS website:
You can go directly or clicking on "Other Countries..." and put there the RS stock numbers.

Hope this can helps you.


0 Votes

June 9, 2016 19:20

Do the component links actually work for anyone? Any time I click on one it takes me to a region selection page and when I select USA it dumps me on the home page of Allied Electronics. So, sure I can search by the number in the link text, but what is the point of the links if they can't maintain a search query through a region selection?

0 Votes

June 9, 2016 13:35

Hello stu,

thanks for your note. CAD Files are now available for download.

Regarding the robot shape, you are right. This is a very common structure for pallettizing robotic arms thanks to the easy set of joints which keep the gripper always parallel to the ground.

Easy to build and effective. This has allowed us to focus more on the motion control system.


0 Votes

August 20, 2018 09:45

Please send the link to download the CAD file for designing the robotic arm as soon as possible...

June 9, 2016 09:32

Do you have the CAD files for the actual arm itself please? (e.g., the laser cutting templates)

Side note: This looks almost exactly like a scaled up version of the uFactory uArm.
No idea who came up with the design first, but apparently that one was based on a pallet robot.


0 Votes
DesignSpark Electrical Logolinkedin